MISSISSIPPI STATE DEPARTMENT OF HEALTH # BUREAU OF PUBLIC WATER SUPPLY CALENDAR YEAR 2010 CONSUMER CONFIDENCE REPORT CERTIFICATION FORM | | Public Water Supply Name List PWS ID #6 For all Wide Supply Name | |---|---| | The F confid must b | List PWS ID #s for all Water Systems Covered by this CCR ederal Safe Drinking Water Act requires each <i>community</i> public water system to develop and distribute a consumer ence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR is mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request. | | Please | Answer the Following Questions Regarding the Consumer Confidence Report | | | Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other) | | | □ Advertisement in local paper □ On water bills □ Other | | | Date customers were informed:/_/ | | I | CCR was distributed by mail or other direct delivery. Specify other direct delivery methods: | | | Date Mailed/Distributed: 6/2411 US POSACL Service | | | CCR was published in local newspaper. (Attach copy of published CCR or proof of publication) | | | Name of Newspaper: | | | Date Published:// | | \square | CCR was posted in public places. (Attach list of locations) | | | Date Posted: Le AU II Office | | | CCR was posted on a publicly accessible internet site at the address: www | | <u>CERTI</u> | FICATION | | I hereby
the form
consiste
Departm | certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in and manner identified above. I further certify that the information included in this CCR is true and correct and is nent of Health, Bureau of Public Water Supply. | | d | Ovald Lower Mesalut (27-11) Fitle (President, Mayor, Owner, etc.) | | | Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518 | # 2010 Consumer Water Report Cason Water District #### Spanish (Espanol) Este informe contiene informacion muy importante sobre la calidad de su agua potable. Por favor lea este informe o comuniquese con alguien que pueda traducir la informacion. #### Is my water safe? We are pleased to present this year's Annual Water Quality Report (Consumer Confidence Report) as required by the Safe Drinking Water Act (SDWA). This report is designed to provide details about where your water comes from, what it contains, and how it compares to standards set by regulatory agencies. This report is a snapshot of last year's water quality. We are committed to providing you with information because informed customers are our best allies. ## Do I need to take special precautions? Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/Centers for Disease Control (CDC) guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Water Drinking Hotline (800-426-4791). ## Where does my water come from? Our water source is from wells drawing from McShan Formation and Gordo Formation Aquifers. #### Source water assessment and its availability A detailed report is available for viewing upon request. Why are there contaminants in my drinking water? Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's (EPA) Safe Drinking Water Hotline (800-426-4791). The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity: microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban stormwater runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban stormwater runoff, and residential uses; organic Chemical Contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban stormwater runoff, and septic systems; and radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration (FDA) regulations establish limits for contaminants in bottled water which must provide the same protection for public health. ### How can I get involved? Please join our monthly board meetings on the first Tuesday of every month at our office. Meeting begins at 5 PM # **Cross Connection Control Survey** The purpose of this survey is to determine whether a cross-connection may exist at your home or business. A cross connection is an unprotected or improper connection to a public water distribution system that may cause contamination or pollution to enter the system. We are responsible for enforcing cross-connection control regulations and insuring that no contaminants can, under any flow conditions, enter the distribution system. If you have any of the devices listed below please contact us so that we can discuss the issue, and if needed, survey your connection and assist you in isolating it if that is necessary. - Boiler/ Radiant heater (water heaters not included) - Underground lawn sprinkler system - Pool or hot tub (whirlpool tubs not included) - Additional source(s) of water on the property - Decorative pond - Watering trough #### Additional Information for Lead If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Cason Water is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. #### Additional Information for Arsenic While your drinking water meets EPA's standard for arsenic, it does contain low levels of arsenic. EPA's standard balances the current understanding of arsenic's possible health effects against the costs of removing arsenic from drinking water. EPA continues to research the health effects of low levels of arsenic which is a mineral known to cause cancer in humans at high concentrations and is linked to other health effects such as skin damage and circulatory problems. # **Water Quality Data Table** In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of contaminants in water provided by public water systems. The table below lists all of the drinking water contaminants that we detected during the calendar year of this report. Although many more contaminants were tested, only those substances listed below were found in your water. All sources of drinking water contain some naturally occurring contaminants. At low levels, these substances are generally not harmful in our drinking water. Removing all contaminants would be extremely expensive, and in most cases, would not provide increased protection of public health. A few naturally occurring minerals may actually improve the taste of drinking water and have nutritional value at low levels. Unless otherwise noted, the data presented in this table is from testing done in the calendar year of the report. The EPA or the State requires us to monitor for certain contaminants less than once per year because the concentrations of these contaminants do not vary significantly from year to year, or the system is not considered vulnerable to this type of contamination. As such, some of our data, though representative, may be more than one year old. In this table you will find terms and abbreviations that might not be familiar to you. To help you better understand these terms, we have provided the definitions below the table. | <u>Contaminants</u> | MCLG
or
MRDLG | TT, or | | Ran | | Sample <u>Date</u> | Violation | Typical Source | |----------------------------|---------------------|------------|-----------|----------|---------|--------------------|---------------|---| | Disinfectants & Dis | infectant B | y-Produc | ets | | | | | | | (There is convincing | evidence th | at additic | n of a di | sinfecta | nt is n | ecessary i | for control o | of microbial contaminants) | | Chlorine (as Cl2)
(ppm) | 4 | 4 | 0.53 | 0.08 | 0.53 | 2010 | No | Water additive used to control microbes | | Haloacetic Acids
(HAA5) (ppb) | NA | 60 | 0 | NA | | 2010 | No | By-product of drinking water chlorination | |---|------|-----|-----|-----|-----|------|----|---| | TTHMs [Total
Trihalomethanes]
(ppb) | NA | 80 | 0 | NA | | 2010 | No | By-product of drinking water disinfection | | Inorganic Contamin | ants | | | | | | | | | Cyanide [as Free Cn] (ppb) | 200 | 200 | 0.2 | NA | | 2010 | No | Discharge from plastic and fertilizer factories; Discharge from steel/metal factories | | Antimony (ppb) | 6 | 6 | 6 | 6 | 6 | 2010 | No | Discharge from petroleum refineries; fire retardants; ceramics; electronics; solder; test addition. | | Arsenic (ppb) | 0 | 10 | 10 | 10 | 10 | 2010 | No | Erosion of natural deposits;
Runoff from orchards; Runoff
from glass and electronics
production wastes | | Barium (ppm) | 2 | 2 | 2 | 2 | 2 | 2010 | No | Discharge of drilling wastes;
Discharge from metal
refineries; Erosion of natural
deposits | | Beryllium (ppb) | 4 | 4 | 4 | 4 | 4 | 2010 | No | Discharge from metal refineries and coal-burning factories; Discharge from electrical, aerospace, and defense industries | | Cadmium (ppb) | 5 | 5 | 5 | 5 | 5 | 2010 | No | Corrosion of galvanized pipes;
Erosion of natural deposits;
Discharge from metal
refineries; runoff from waste
batteries and paints | | Chromium (ppb) | 100 | 100 | 100 | 100 | 100 | 2010 | No | Discharge from steel and pulp
mills; Erosion of natural
deposits | | Fluoride (ppm) | 4 | 4 | 4 | 4 | 4 | 2010 | No | Erosion of natural deposits;
Water additive which
promotes strong teeth;
Discharge from fertilizer and
aluminum factories | | Mercury [Inorganic]
(ppb) | 2 | 2 | 2 | 2 | 2 | 2010 | No | Erosion of natural deposits;
Discharge from refineries and
factories; Runoff from
landfills; Runoff from
cropland | | Selenium (ppb) | 50 | 50 | 50 | 50 | 50 | 2010 | No | Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines | | Thallium (ppb) | 0.5 | 2 | 2 | 2 | 2 | 2010 | No | Discharge from electronics, glass, and Leaching from ore-
processing sites; drug factories | . | Nitrate [measured as
Nitrogen] (ppm) | 10 | 10 | 10 | 10 | 10 | 2010 | No | Runoff from fertilizer use;
Leaching from septic tanks,
sewage; Erosion of natural
deposits | |--|----------|-----|-----|----|----|-------|----|--| | Volatile Organic Con | taminant | S | | | | 10.00 | | | | 1,2,4-
Trichlorobenzene
(ppb) | 70 | 70 | 70 | NA | | 2010 | No | Discharge from textile-
finishing factories | | cis-1,2-
Dichloroethylene
(ppb) | 70 | 70 | 70 | NA | | 2010 | No | Discharge from industrial chemical factories | | Xylenes (ppm) | 10 | 10 | 10 | NA | | 2010 | No | Discharge from petroleum factories; Discharge from chemical factories | | Dichloromethane
(ppb) | 0 | 5 | 5 | NA | | 2010 | No | Discharge from pharmaceutical and chemica factories | | o-Dichlorobenzene
(ppb) | 600 | 600 | 600 | NA | | 2010 | No | Discharge from industrial chemical factories | | p-Dichlorobenzene
(ppb) | 75 | 75 | 75 | NA | | 2010 | No | Discharge from industrial chemical factories | | Vinyl Chloride (ppb) | 0 | 2 | 2 | NA | | 2010 | No | Leaching from PVC piping;
Discharge from plastics
factories | | 1,1-Dichloroethylene (ppb) | 7 | 7 | 7 | NA | | 2010 | No | Discharge from industrial chemical factories | | trans-1,2-
Dicholoroethylene
(ppb) | 100 | 100 | 100 | NA | | 2010 | No | Discharge from industrial chemical factories | | 1,2-Dichloroethane
(ppb) | 0 | 5 | 5 | NA | | 2010 | No | Discharge from industrial chemical factories | | 1,1,1-Trichloroethane
(ppb) | 200 | 200 | 200 | NA | | 2010 | No | Discharge from metal degreasing sites and other factories | | Carbon Tetrachloride
(ppb) | 0 | 5 | 5 | NA | | 2010 | No | Discharge from chemical plants and other industrial activities | | 1,2-Dichloropropane (ppb) | 0 | 5 | 5 | NA | | 2010 | No | Discharge from industrial chemical factories | | Trichloroethylene (ppb) | 0 | 5 | 5 | NA | | 2010 | No | Discharge from metal degreasing sites and other factories | | 1,1,2-Trichloroethane
(ppb) | 3 | 5 | 5 | NA | | 2010 | No | Discharge from industrial chemical factories | | Tetrachloroethylene
(ppb) | 0 | 5 | 5 | NA | | 2010 | No | Discharge from factories and dry cleaners | | Benzene (ppb) | 0 | 5 | 5 | NA | | 2010 | No | Discharge from factories;
Leaching from gas storage
tanks and landfills | | Toluene (ppm) | 1 | 1 | 1 | NA | | 2010 | No | Discharge from petroleum factories | | Ethylbenzene (ppb) | 700 | 700 | 700 | NA | 2010 | | INO I | ischarge from petroleum
fineries | |--|-------------|-----------|----------------------|-----------------------|---------|--|----------------------|---| | Styrene (ppb) | 100 | 100 | 100 | NA | 2010 | | No pl | ischarge from rubber and
astic factories; Leaching
om landfills | | <u>Contaminants</u> | <u>MCLG</u> | <u>AL</u> | Your
<u>Water</u> | Sample
<u>Date</u> | # Sampl | | Exceeds
<u>AL</u> | Typical Source | | Inorganic Contamin | ants | | | | | | | | | Copper - action level
at consumer taps
(ppm) | 1.3 | 1.3 | 1.3 | 2010 | 0 | | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Lead - action level at consumer taps (ppb) | 0 | 15 | 15 | 2010 | 10 0 | | No | Corrosion of household plumbing systems; Erosion of natural deposits | | Term | Definition | |------|--| | ppm | ppm: parts per million, or milligrams per liter (mg/L) | | ppb | ppb: parts per billion, or micrograms per liter (μg/L) | | NA | NA: not applicable | | ND | ND: Not detected | | NR | NR: Monitoring not required, but recommended. | | Important Drinking Water Definitio | ns | |------------------------------------|---| | Term | Definition | | MCLG | MCLG: Maximum Contaminant Level Goal: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. | | MCL | MCL: Maximum Contaminant Level: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. | | TT | TT: Treatment Technique: A required process intended to reduce the level of a contaminant in drinking water. | | AL | AL: Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow. | | Variances and Exemptions | Variances and Exemptions: State or EPA permission not to meet an MCL or a treatment technique under certain conditions. | | MRDLG | MRDLG: Maximum residual disinfection level goal. The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. | | MRDL | MRDL: Maximum residual disinfectant level. The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants. | | MNR | MNR: Monitored Not Regulated | | MPL | MPL: State Assigned Maximum Permissible Level | Contact Name: Donald Young Address: 30007 Cason Rd Nettleton, MS 38858 Phone: 662-256-2442 Cason Water Swo7(ason Rd) Wetherow MS 38858 Bureau of Water POBOX 1700 Jackson MS 392 3921351700 hillihankladhilaalla